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Abstract. The coherent dynamics of magnetoexcitons in semiconductor nanorings following pulsed optical
excitation is studied. The calculated temporal evolution of the excitonic dipole moment may be understood
as a superposition of the relative motion of electrons and holes and a global circular motion associated
with the magnetic-field splitting of these states. This dynamics of the electron-hole pairs can be generated
either by local optical excitation of an ordered ring or, alternatively, by homogeneous excitation of rings
with broken rotational symmetry due to disorder or band tilting.

PACS. 71.35.Cc Intrinsic properties of excitons; optical absorption spectra – 71.70.Ej Spin-orbit coupling,
Zeeman and Stark splitting, Jahn-Teller effect – 78.66.-w Optical properties of specific thin films – 42.50.Md
Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals,
optical nutation, and self-induced transparency

1 Introduction

Most recently it became possible to fabricate ring-like
semiconductor nanostructures and to measure some of
their optical properties [1–3]. Theoretical studies of ex-
citons and biexcitons in semiconductor nanorings pene-
trated by a magnetic field have predicted Aharonov-Bohm
oscillations [4] in the respective binding energies and oscil-
lator strengths [5–7]. It has been found that for magnetic
fluxes Φ = (n+1/2)Φ0, where n is an integer and Φ0 is the
flux quantum Φ0 = hc/e both, binding energy and oscil-
lator strength pass through a maximum for excitons, and
through a minimum for biexcitons. They can in principle
be studied using conventional linear and nonlinear optical
experiments.

In general, a magnetic flux will lead to a circular mo-
tion of both electrons and holes. For optical excitation
close to the gap, electrons and holes move in opposite di-
rection, at least in a situation where the Coulomb interac-
tion can be neglected. The corresponding partial electron
or hole currents are largest for fluxes Φ = (n+ 1/4)Φ0 or
Φ = (n+ 3/4)Φ0. For spatially homogeneous optical exci-
tation, the photo-generated carriers follow the well known
persistent current scenario [8]. In this situation, the opti-
cal excitation would just lead to a transient change of the
magnetic moment of the ring.

In the present work we concentrate on the underlying
electron-hole dynamics, which can in principle be revealed
by local optical pulse excitation. We show that the latter
will give rise to a rotating electric dipole moment and,
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accordingly, to a circularly polarized radiation in the GHz
to THz frequency range that is determined by the effective
masses of the electrons and holes, the diameter of the ring
and the magnetic field strength. The circular motion of
the excitonic dipole moment is found to survive in the
presence of the Coulomb interaction, provided that the
rings are sufficiently small such that their circumference
remains of the order of the extension of the relative motion
of the correlated electron-hole pair.

We study the dynamics of the dipole moment after
optical excitation in the excitonic energy range of a semi-
conductor nanoring. The model system and the numerical
approach are presented in Sections 2 and 3. Results for
the noninteracting electron-hole system are given in Sec-
tion 4 in order to introduce the fundamental physics and
notions used in this report. The case of excitonic excita-
tions is discussed in Section 5. In both Sections 4 and 5,
we consider local excitation to generate the initial wave
packets. This restriction is lifted in Section 6, where we
treat the case of homogeneous optical excitation over the
entire ring. In this case, the symmetry breaking necessary
to form spatially localised wave packets required to re-
veal the dynamical behaviour, is obtained by introducing
spatially inhomogeneous one-particle potentials within the
ring. Both, tilting of the bands or energetic site disorder
are considered.

It is shown that the dynamical behaviour of the photo-
generated excitonic dipole can be described as a super-
position of the intra-excitonic wave packet dynamics [9],
which is characterized by frequencies in the THz-range,
and the dynamics resulting from the magnetic-field split-
ting of one of the contributing excitonic relative-motion
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states, corresponding to frequencies in the GHz- to THz-
range. This excitonic doublet corresponds to an optically
forbidden dipole transition in a totally homogeneous sys-
tem that becomes, however, allowed when the rotational
symmetry is broken either by inhomogeneous excitation
or by single-particle potentials inherent to the system it-
self. The splitting of this state, which is twofold degen-
erate in the absence of the magnetic field, is periodic in
the magnetic flux and vanishes whenever Φ is a multiple
of half the flux quantum Φ0. This effect will be termed as
“quantum-confined Zeeman effect”. Possible experimental
realizations are discussed in the concluding Section 7.

2 The model system

In order to reduce the numerical effort, we restrict our
calculations to a two-band model with spinless particles.
At first sight, this may seem to be a rather severe approx-
imation. It is, however, directly suitable for the descrip-
tion of some interesting physical situations. In real nanos-
tructures fabricated from III-V-material, the valence-band
structure close to the center of the Brillouin zone, and
thus the optical resonances near the fundamental edge,
consist of energetically well separated levels related to
the heavy hole (hh), the light hole (lh) and the split-off
(so) valence band. We may then study the situation near
the hh-transitions. The latter are still twofold degener-
ate, but choosing circularly polarized light pulses, only one
species of transitions is excited due to the relevant selec-
tion rules [10]. This situation can be adequately described
within a two-band model. Assuming spinless particles, we
disregard spin-flip processes, which would essentially lead
to a depopulation of the excited levels and thus to a damp-
ing of the signals. In nanostructures, these processes are,
however, expected to be slow in comparison with the time
scale relevant for the dynamics considered here [11], and
thus they may safely be neglected.

We consider a ring consisting of N sites equally spaced
with nearest neighbour separation d and with radius R =
Nd/(2π). The sites at positions n carry two states each
with energies εcn and εvn, which give the diagonal elements
T c
nn and T v

nn of the Hamiltonian matrix T in real-space
representation. The nondiagonal matrix elements of the
Hamiltonian define the coupling of the local basis states
to its neighbours. In the presence of a magnetic field and
for nearest-neighbour interactions the nonvanishing ma-
trix elements are given by

T c
n,n+1 = Jc exp[i2π(Φ/N)/Φ0] ,

T c
n+1,n = Jc exp[−i2π(Φ/N)/Φ0] (1)

for the conduction band. Accordingly, the holes in the va-
lence band are described by

T v
n,n+1 = Jv exp[−i2π(Φ/N)/Φ0] ,

T v
n+1,n = Jv exp[i2π(Φ/N)/Φ0] . (2)

Compared to the case without magnetic field, the tight-
binding coupling parameters Jc and Jv are thus multi-

plied by a phase factor depending on the magnetic flux Φ
through the ring [7,12,13]. Φ0 = hc/e is the flux quantum.

In the absence of Coulomb interaction the system
Hamiltonian reads

H0 =
∑
nm

T c
nmc

+
n cm +

∑
nm

T v
nmd

+
n dm. (3)

Here, c+n (cm) creates (destroys) an electron at site n (m)
in the conduction band and d+

n (dm) creates (destroys) a
hole at site n (m) in the valence band. The eigenvalues of
this Hamiltonian form two bands (Eν(qi), ν = c, v)

Eν(qi) = −2Jν cos(qid) (4)

defined for the wave vectors qi, i = 1... N , where

qi = ki +
2πΦ
NdΦ0

, (5)

and where ki are the wave vectors without magnetic field

ki = −π
d

+
2π
d

i
N
· (6)

The effective masses at the extrema of the valence and
conduction band are then given by

mν =
~2

2Jνd2
, (7)

or equivalently

mνR
2 Jν
N2

=
~2

2(2π)2
= const. (8)

The physically relevant parameters are the effective
masses mν and the radius R of the ring. The parameters
Jν and N are chosen in such a way that i) the dispersions
close to the band extrema are representative for realis-
tic semiconductor nanostructures, and ii) that the numer-
ics remains manageable. The calculations discussed below
were performed for a ring with radius R = 11 nm contain-
ing N = 20 sites, which corresponds to a site separation
d = 34 Å. The chosen coupling parameters Jc = 50 meV
and Jv = 10 meV correspond to effective masses close to
GaAs values mc = 0.064m0 and mv = 0.32m0, where m0

is the free electron mass. In Section 4 we will also use
values Jc = Jv = 50 meV for tutorial reasons. A mag-
netic flux of Φ0/4 through the ring would require a mag-
netic field of about 12 T. As shown in the next section,
the relevant time scale for the description of the electron-
hole dynamics is of the order of 1 to 100 ps, which is
well within the coherent excitonic regime of a semicon-
ductor nanostructure. Larger rings would require smaller
magnetic fields, but the relevant time scales also become
larger, as is shown in Section 5, so that phase-breaking
interactions will eventually destroy the coherent dynam-
ics one intents to observe. We therefore believe that the
chosen parameters are a good compromise.

Perturbation potentials destroying the rotational sym-
metry of the ring can easily be introduced in our descrip-
tion by taking site dependent electron and hole energies
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εcn and εvn. Disorder in the conduction band is modeled
by choosing εcn randomly from a Gaussian distribution
function exp(−(εcn)2/2σ2

c), where σc characterizes the en-
ergetic scale of the disorder. Eventually, we will consider
also a tilting of the conduction band described by

εcn = σt sin[2(n− 1)π/N ], (9)

which corresponds to an additional external potential
varying linearly with the y-coordinate in the plane of the
ring, given site n = 1 lies on the positive x-axis. We will
further assume that the disorder potentials for electrons
and holes or the respective tilting potentials are corre-
lated, as is often the case in semiconductor nanostructures.
We take εvn = (Jv/Jc)εcn = (mc/mv)εcn, i.e., we weight the
potential perturbations inversely with the masses.

The Coulomb interaction is included using the
monopole-monopole form

HC =
1
2

∑
nm

(c+n cn − d+
n dn)Vnm(c+mcm − d+

mdm), (10)

where

Vnm = U0
d

Nd
π sin( πN |n−m|) + a0

· (11)

In principle, HC includes the repulsion between electrons
and between holes, as well as the electron-hole attraction.
In the low-excitation regime considered here, only the lat-
ter is relevant. The Coulomb-interaction potential, equa-
tion (11), is regularized to avoid the divergence of the
exciton binding energy in one dimension. The parameters
U0 and a0 characterize the strength of the interaction and
its spatial variation, respectively. The sin(x) function in
the denominator of equation (11) is needed to describe
properly the spatial distance between sites n and m on
the ring.

The electron-hole dynamics is of central importance for
the here discussed physical phenomena. It is thus essen-
tial to treat the relative motion of the Coulomb-correlated
electron-hole pair in a proper way. This requirement is sat-
isfied by our present model. It describes correctly the ef-
fects of the electron-hole correlation on the optical absorp-
tion spectrum where it yields characteristic resonances
near the absorption edges, which in a bulk situation would
be termed “excitonic bound states” (see also [15]). It is
thus able to account for the reduced relative motion of the
electron-hole pair on the length scale of the “Bohr radius”
and of the diameter of the nanoring. The present model
has previously been used to study the center-of-mass and
the relative motion of a Coulomb-correlated electron-hole
pair in a disordered one-dimensional semiconductor [16].

The coupling of the electronic system to a classical
optical electric field is given by

HI = −E(t)P = −E(t)
∑
n

(µndncn + µn
∗c+n d

+
n ), (12)

where P is the total optical interband polarization, which
is obtained by summing over all microscopic polarizations

µndncn, and µn are the on-site dipole matrix elements
allowing the optical transitions between valence and con-
duction bands. Homogeneous excitation is obtained with
µn = µ, inhomogeneous excitation at site 1 corresponds to
the choice µn = µδ1n. The electric field pulse is chosen as

E(t) = E0
1√
πδtL

exp (−iωLt) exp
(
− t2

δt2L

)
· (13)

The time-evolution of the system is then determined by
the total Hamiltonian

H = H0 +HC +HI. (14)

3 The numerical approach

The time evolution of the interband coherence plk = 〈dlck〉
is obtained from the Heisenberg equation together with
the total Hamiltonian H. In this work we adopt linear
response theory, i.e., we solve the system of differential
equations

−i∂tplk =−
∑
n

T c
knpln−

∑
m

T v
mlpmk + Vlkplk +E(t)µ∗l δlk.

(15)

The electron and hole densities nc
ll and nv

ll can be obtained
from the conservation laws [14] valid in the linear response
regime

nc
ll =

∑
k

pklp
∗
kl (16)

nv
ll =

∑
k

plkp
∗
lk.

The electron and hole dipole moments dc and dv defined
with respect to the center of the ring are given by

dνx = ±e
∑
l

nνllR cosφl (17)

dνy = ±e
∑
l

nνllR sinφl,

where φl = 2π(l−1)/N defines the angular position of site
l. The signs depend on the charge of the particle in band
ν, negative signs correspond to electrons, positive signs to
holes. The total electron-hole dipole moment d is

d = dc + dv. (18)

The optical ε2-spectra are calculated by Fourier trans-
forming the optical interband polarization plk(t) corre-
sponding to a short pulse (δtL = 0.1 ps) excitation with
central frequency ωL close to the lowest transition. The
spectra are calculated assuming a polarization decay time
T2 = 50 ps, while we use T2 → ∞ for the calculation of
the coherent dynamics.

The dynamical motion of the dipole may be considered
as a source of electromagnetic radiation. The associated
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Fig. 1. Band structure of a ring composed from N = 6 sites
for equal electron and hole masses. The vertical dashed lines
indicate direct transitions at wave vectors km, the vertical solid
lines those at wave vectors qm = km+ 1

4
2π
Nd shifted by the mag-

netic flux Φ = Φ0/4. Dotted lines indicate the lowest indirect
transitions for inhomogeneous excitation.

electric field is obtained from the second time derivative
of the dipole moment, which constitutes the source term
in Maxwell’s equations. The corresponding polarization
angle is determined by

α = arctan
d2dy/dt2

d2dx/dt2
· (19)

4 Local excitation of the noninteracting
system

In order to elucidate the underlying basic physical mech-
anism, we consider first the case U0 = 0 and Jc =
Jv = 50 meV. Figure 1 shows the valence and conduc-
tion bands as well as the relevant optical transitions for
N = 6. The wave vectors km for the magnetic-field-free
case Φ = 0 are denoted by vertical dashed lines, those for
Φ = Φ0/4 by solid lines. For Φ = 0 there are two twofold
degenerate optical dipole transitions (at k = ±π/3d and
k = ±2π/3d), and two nondegenerate transitions (at k = 0
and k = π/d). For Φ = Φ0/4 the degeneracies are lifted
and the spectrum consists of 6 lines. It can easily be seen
that one would obtain three twofold degenerate transitions
for Φ = Φ0/2.

The optical ε2-spectrum, which corresponds to the lin-
ear absorption spectrum, is shown in Figure 2 for N = 20.
The lines pointing downward show the 11 transitions for
Φ = 0, the upward pointing lines show the 20 nondegen-
erate transitions for Φ = Φ0/4. Note that the amplitudes
are determined by the degeneracies of the corresponding
transitions.

We concentrate on the transitions close to the funda-
mental gap. As can be seen in Figure 2, the two lowest
transitions in the spectrum for Φ = Φ0/4 are strongly de-
pendent on the magnetic flux. They merge for Φ→ Φ0/2.

In the following we assume inhomogeneous excitation,
where the optical excitation takes place at a single site
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Fig. 2. Optical spectrum due to direct transitions for a ho-
mogeneous ring with N = 20 sites, equal electron and hole
masses, Jc = Jv = 50 meV, and without Coulomb interac-
tion, U0 = 0. Pointing downwards: no magnetic flux. Pointing
upwards: Φ = Φ0/4.
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Fig. 3. Optical spectrum for the homogeneous ring with
N = 20 close to the fundamental gap, no Coulomb interac-
tion, U0 = 0, and local excitation at site n = 1. The mag-
netic flux is Φ = Φ0/4. (a) Equal electron and hole masses
Jc = Jv = 50 meV. The higher energy peak is due to
the twofold degenerate indirect transitions indicated by dot-
ted lines in Figure 1. (b) Different electron and hole masses
Jc = 50 meV, Jv = 10 meV. The degeneracy is lifted.

only (n = 1, on the positive x-axis). In this situation ad-
ditional transitions become allowed which are not shown
in Figure 2. In order to resolve the spectrum for this situ-
ation, we present an enlarged view of the low-energy tran-
sitions in Figures 3 and 4. Here and in the following the
energy zero corresponds to the lowest transition energy of
the perfect noninteracting system for Φ = 0. In the spec-
trum for Φ = Φ0/4, Figure 3a, we find two absorption lines
spaced by about 2.5 meV. The lower peak corresponds to
the shifted k = 0 transition, the higher one is associated
with the first indirect transitions, which are twofold de-
generate in the case of equal electron and hole masses
(see dotted lines in Fig. 1).

The optical pulse has an average excitation energy
ωL close to the fundamental gap and a temporal width



K. Maschke et al.: Coherent dynamics of magnetoexcitons in semiconductor nanorings 603
2

(a
rb

.u
ni

ts
) (a)

2
(a

rb
.u

ni
ts

) (b)

2
(a

rb
.u

ni
ts

) (c)

-11 -10 -9 -8
energy/ meV

2
(a

rb
.u

ni
ts

) (d)

Fig. 4. Optical spectrum close to the fundamental gap for
the ring with N = 20 sites for different electron and hole
masses, Jc = 50 meV, Jv = 10 meV, with Coulomb interaction
U0 = 16.5 meV. (a) Homogeneous ring, local excitation at site
n = 1 and magnetic flux Φ = Φ0/4. (b) Homogeneous ring,
homogeneous excitation, magnetic flux Φ = 0. The peak is the
lowest excitonic resonance. (c) Tilted bandstructure, σt = 0.2
meV, homogeneous excitation, magnetic flux Φ = 0. In addi-
tion to the lowest excitonic resonance the next higher excitonic
states become optically allowed. (d) Same as c), but with mag-
netic flux Φ = Φ0/4. The second resonance is splitted.
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Fig. 5. Total dipole moment d(t) = (dx(t), dy(t)) as a function
of time. (a) Equal electron and hole masses, cf. Figure 3a. (b)
Different masses, cf. Figure 3b.

of δtL = 1 ps. The resulting total dipole moment d of the
photo-generated electron-hole pair is shown in Figure 5a,
where the x-component dx(t) and the y-component dy(t)
are shown as a function of time. Electron and hole start
at site n = 1 and move into opposite directions with equal
velocities, since their masses are equal. Thus dx(t) remains
zero while dy(t) oscillates. The trace dy(dx) shows the lin-
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Fig. 6. Trace of the total dipole moment d(t) = (dx(t), dy(t))
(a – g) and of the second time derivative of the total dipole mo-
ment (h) for Φ = Φ0/4. Vertical axes: y-direction, horizontal
axes: x-direction. (a) Equal electron and hole masses, inho-
mogeneous excitation at site n = 1 of the homogeneous ring,
U0 = 0, cf. Figure 3a. The polarization is linear. (b) Different
masses, inhomogeneous excitation at site n = 1 of the homoge-
neous ring, U0 = 0, cf. Figure 3b. The polarization is circular.
(c) Inhomogeneous excitation at site n = 1 of the homoge-
neous ring, U0 = 16.5 meV, cf. Figure 4a. (d) Same as (c),
but homogeneous excitation of a ring with tilted band struc-
ture, σt = 0.1 meV, cf. Figure 4d. Note the qualitative simi-
larity with Figure 6c. (e) Homogeneous excitation of the ring
with tilted bandstructure and disorder, σc = σt = 0.1 meV,
U0 = 16.5 meV. (f) Homogeneous excitation of the ring with
disorder and without band tilting, σc = 0.1 meV, σt = 0,
U0 = 16.5 meV. (g) Same as (f), but without magnetic flux,
Φ = 0. (h) Second time derivative of the total dipole moment
for the situation of Figure 6d.

ear polarization of this motion (see Fig. 6a). The oscil-
lation frequency of dy(t) is determined by the energetic
separation of the involved transitions. For small energetic
pulse widths like in our calculation only the two lowest
transitions contribute and the motion is purely sinusoidal.

In realistic semiconductors electron and hole masses
will be different. In this case the situation may change
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considerably. Figure 3b shows the spectrum close to the
gap for a ring with Jc = 50 meV and Jv = 10 meV for ex-
citation at site n = 1 and Φ = Φ0/4. The peak with lowest
energy corresponds again to the direct transition between
the lowest electron state and the highest hole state, which
would correspond to the k = 0 transition in the absence of
the magnetic flux. The second peak, however, is now due
to the indirect transition between the same electron state
and the next hole state. Both transitions are nondegen-
erate because of the different masses. As for energetically
narrow pulses only a single electron k-state contributes,
the electron density is homogeneously distributed over the
ring after the light pulse, yielding dc = 0. On the other
hand, the two contributing hole states form a wave packet
that moves around the ring with a velocity given by the
energetic phase factors of the two states involved. This
leads to a circularly polarized motion of the total dipole
moment d(t) as seen in Figures 5b and 6b, where both
dx(t) and dy(t) as well as the trace dy(dx) are shown.

5 Local excitation of the interacting system

Coulomb interaction between electron and hole is ex-
pected to be important for the wave packet dynamics.
In the following we assume U0 = 16.5 meV, which corre-
sponds to a binding energy of about 10 meV [15].

Magnetic field effects in the low-energy excitations can
only be expected if the corresponding electron-hole pairs
are not too tightly bound, or – in other words – if the
excitonic Bohr radius remains comparable with the ring
circumference. As already mentioned above, small rings
are required in any case, since the coherent dynamics can
only take place on a time scale smaller than the dephasing
time. For given effective masses, the differences in energy
leading to the circular motion and thus the time scale of
the circular dynamics, depend solely on the ring radius R
and increase as 1/R2 with decreasing R. In particular, the
energetic distances do not depend on the number of sites
N nor on the site separation d or the coupling parame-
ters Jν for fixed masses and radius.

Similar to the previous section, we first consider a ho-
mogeneous ring and local excitation at site n = 1. The low-
est transitions are shown in Figure 4a. We see a single peak
near –10 meV and a split peak near −9.4 meV. Compar-
ison with the absorption spectrum for homogeneous exci-
tation (Fig. 4b–d) shows that this doublet originates from
a higher twofold degenerate (for Φ = 0) excitonic bound
state with odd parity, which is optically forbidden for ho-
mogeneous excitation. This transition becomes, however,
allowed if the symmetry is broken as e.g. under local ex-
citation conditions, where the circular symmetry of the
system is perturbed by the local excitation itself. Alterna-
tively, the symmetry may be broken by a perturbing one-
particle potential. This is also evident from Figures 4c and
4d, which show the absorption spectra for homogeneous
excitation for Φ = 0 and for Φ = Φ0/4, but where now ad-
ditional band-tilting potentials εcn = σt sin[2(n − 1)π/N ]
and εvn = (Jc/Jv)σt sin[2(n − 1)π/N ] are added to the
conduction and valence band site energies, respectively. In

this case, the symmetry is broken by the additional poten-
tials, and the optical transition into these states becomes
allowed even under homogeneous excitation conditions.

The doublet splitting in Figure 4a is due to the mag-
netic flux, as can also been seen in Figure 4d. This splitting
is periodic with period Φ0/2. This effect could be called
“quantum confined Zeeman effect”. The period halfing is
due to the fact that the two peaks cross at Φ = Φ0/2.

Similar to the situation treated in the previous sec-
tion, the optical excitation of the doublet structure leads
to electron and hole wave packets moving in opposite di-
rections, but now with different velocities. The time scale
of the rotation is determined by the small splitting of
the doublet. The rotation frequency is thus considerably
smaller than the superimposed linear oscillation which is
due to the contribution of the lowest excitonic transition,
and which scales with the energetic distance between the
first absorption peak and the doublet. This explains the
rosette-like trace of the total dipole moment shown in Fig-
ure 6c. With our parameters, the circular component has
a period of 100 ps, while that of the linear component has
a period of the order of 5 ps.

6 Homogeneous excitation
of the inhomogeneous system

6.1 Band tilting

As already mentioned in the previous Section 5, spectra
and dynamical behaviour similar to Figures 4a and 6c
can be obtained also under homogeneous optical excita-
tion conditions, provided that the rotational symmetry is
broken by an additional one-particle potential. This situ-
ation will be investigated in the present section. We con-
sider the sinusoidal perturbation potential equation (9),
εcn = σt sin[2(n − 1)π/N ] and εvn = (Jc/Jv)εcn, applied
to the conduction and valence band site energies, respec-
tively.

Figures 4b, 4c and 4d show the spectra close to the
absorption edge for Φ = 0 and σt = 0, Φ = 0 and
σt = 0.2 meV, as well as for Φ = Φ0/4 and σt = 0.2 meV,
respectively. The dynamics of the total dipole moment is
shown in Figure 6d for σt = 0.1 meV. It closely resembles
that of Figure 6c for the perfect ring with single-site exci-
tation. The additional stationary dipole moment seen in
Figure 6d is caused by the tilting of the valence and con-
duction bands. The stationary dipole moment increases
with the amplitude of the sinusoidal potential, whereas
the amplitude of the dynamic motion decreases. The latter
feature is due to the fact that the excitonic wave function
becomes more confined for larger amplitudes σt and fi-
nally localizes in the region where the differences between
the site energies are smallest.

The source term in Maxwell’s equations, which is given
by the second time derivative of the dipole moment, is
shown in Figure 6h. It essentially reflects the dynamical
part of the total dipole moment shown in Figure 6d.
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Fig. 7. Polarization angle α, see equation (19), as a function of
time for homogeneous excitation of the disordered ring. Upper
panel: With magnetic flux Φ = Φ0/4, cf. Figure 6f. There is
no time reversal. The circular character is clearly seen. Lower
panel: Without magnetic flux, cf. Figure 6g. Two perfect time
reversals can be identified.

6.2 Disorder

Similar effects as discussed above may be expected for
a disorder potential, which again will break the circu-
lar symmetry of the ring, thus rendering transitions into
higher excitonic states allowed. A random potential, how-
ever, leads to a somewhat more complicated trace of the
total dipole, as shown in Figure 6e, where in addition to
the previously used sinusoidal potential we have added a
random potential with σc = σt = 0.1 meV. Again a sta-
tionary dipole is found which results from a fluctuation
of the local band gap, but it now points into a slightly
different direction. Figure 6f shows the situation without
sinusoidal potential. In this case the stationary dipole has
changed its direction, which is now solely determined by
the disorder potential. The dynamical part still looks very
similar. The magnetic flux Φ = Φ0/4 leads to a circular
component in the dynamical trace, as can be seen in the
upper panel of Figure 7, where the polarization angle α
defined in equation (19) is shown. The motion is in gen-
eral not periodic. In fact, a periodic evolution would re-
quire that the energies involved have rational ratios. The
dynamics of the total dipole moment in the absence of
the magnetic field is shown in Figure 6g, the correspond-
ing angle α is presented in the lower panel of Figure 7.
It is seen that the motion periodically changes its direc-
tion, and there is no circular component on the temporal
average.

7 Conclusions

We have shown that excitonic wave packets can be gen-
erated in semiconductor nanorings penetrated by a mag-
netic flux either by local excitation of a homogeneous ring

or by homogeneous excitation of an inhomogeneous ring.
The resulting dynamics of the electric dipole moment can
be described as a superposition of a nearly linear oscil-
lation and a circular motion, where the latter is due to
the magnetic field. The expected absolute magnitude of
the dipole moment is of the order of or smaller than the
diameter of the ring times the elementary charge. It de-
pends on the excitation intensity, which, however, has to
be kept small enough in order to avoid dephasing due to
Coulomb scattering.

Experimentally, the dipole motion could be detected
by measuring the corresponding electromagnetic field,
which will follow the underlying polarization pattern. Al-
ternatively, one could use also pump-probe or four-wave-
mixing to observe the predicted effects, as has been suc-
cessfully done in the case of Bloch oscillations in biased
semiconductor superlattices [17].

In order to obtain observable signals it will probably
be necessary to perform the experiments on ensembles of
rings. The excitation has then to be homogeneous over the
entire ensemble, and a gradient of composition or strain
should be applied to produce the sinusoidal symmetry
breaking potential.

Disorder will always be present in real samples. Our re-
sults show, however, that it does not disturb the dynamics
of a single ring severely. For an ensemble of many nanor-
ings, the disorder induced changes are expected to cancel
out at times longer than the pulse duration. As an alter-
native to such an ensemble one might fabricate a quantum
well with closely spaced holes of diameters in the 10 to 100
nm range. This arrangement should also facilitate the cre-
ation of a band gap gradient over the sample. Although the
different rings have then slightly different optical gaps, the
dynamics of the dipole moment is identical for all rings.
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B 50, 8114 (1994).

10. C. Sieh, T. Meier, F. Jahnke, A. Knorr, S.W. Koch, P.
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